本文转自性能测试基础知识—QPS和TPS
基本概念
QPS: Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准。
TPS: 是TransactionsPerSecond的缩写,也就是事务数/秒。它是软件测试结果的测量单位。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数,最终利用这些信息来估计得分。客户机使用加权协函数平均方法来计算客户机的得分,测试软件就是利用客户机的这些信息使用加权协函数平均方法来计算服务器端的整体TPS得分。
QPS(TPS)= 并发数/平均响应时间 或者 并发数 = QPS*平均响应时间 这里响应时间的单位是秒
举例,我们一个HTTP请求的响应时间是20ms,在10个并发的情况下,QPS就是 QPS=10*1000/20=500。
这里有个关键的点就是QPS一定是跟并发数联系在一起的,离开并发数谈QPS是没意义的。
QPS、TPS和性能的关系
一个系统吞吐量通常由QPS(TPS)、并发数两个因素决定,每套系统这两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统的吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换、内存等等其它消耗导致系统性能下降。
开始,系统只有一个用户,CPU工作肯定是不饱合的。一方面该服务器可能有多个cpu,但是只处理单个进程,另一方面,在处理一个进程中,有些阶段可能是IO阶段,这个时候会造成CPU等待,但是有没有其他请 求进程可以被处理)。随着并发用户数的增加,CPU利用率上升,QPS相应也增加(公式为QPS=并发用户数/平均响应时间。)随着并发用户数的增加,平均响应时间也在增加,而且平均响应时间的增加是一个指数增加曲线。而当并发数增加到很大时,每秒钟都会有很多请求需要处理,会造成进程(线程)频繁切换,反正真正用于处理请求的时间变少,每秒能够处 理的请求数反而变少,同时用户的请求等待时间也会变大,甚至超过用户的心理底线。
结论
1、我们对单台服务器进行压测有了性能测试数据以后,我们可以根据业务上能接受最大客户响应时间对应到相应的QPS数,从而计算出需要的服务器的数量。举例来说,响应时间10ms和1000ms对通过浏览器的客户是没有明显体验差别的,基于1000ms估算服务器的数量我们的成本会降低很多。
2、每天300wPV的在单台机器上,这台机器需要多少QPS?对于这样的问题,假设每天80%的访问集中在20%的时间里,这20%时间叫做峰值时间。( 3000000 0.8 ) / (360024 * 0.2 ) = 139 (QPS).
3、还是2中的数据,如果一台机器的QPS是58,需要几台机器来支持?答:139 / 58 = 3
其它(转)
一种则需要测试服务器能否接受10万用户同时在线操作,如果是用IIS做应用服务器的话,单台可承受的最大并发数不可能达到10万级,那就必须要使用集群,通过多台机器做负载均衡来实现;
如果是用websphere之类的应用服务器的话,单台可承受的最大并发数可以达到10万级,但为性能考虑还是必须要使用集群,通过多台机器做负载均衡来实现;通常有1个简单的计算方式,1个连接产生1个session,每个session在服务器上有个内存空间大小的设置,在NT上是3M,那么10万并发就需要300G内存,当然实际使用中考虑其他程序也占用内存,所以准备的内存数量要求比这个还要多一些。还有10万个用户同时在线,跟10万个并发数是完全不同的2个概念。
如何做这个转换将10万个同时在线用户转换成多少个并发数呢?这就必须要有大量的历史日志信息来支撑了。系统日志需要有同时在线用户数量的日志信息,还需要有用户操作次数的日志信息,这2个数据的比例就是你同时在线用户转换到并发数的比例。
另外根据经验统计,对于1个JAVA开发的WEB系统(别的我没统计过,给不出数据),一般1台双CPU、2G内存的服务器上可支持的最大并发数不超过500个(这个状态下大部分操作都是超时报错而且服务器很容易宕机,其实没什么实际意义),可正常使用(单步非大数据量操作等待时间不超过20秒)的最大并发数不超过300个。
假设你的10万同时在线用户转换的并发数是9000个,那么你最少需要这样的机器18台,建议不少于30台。当然,你要是买个大型服务器,里面装有200个CPU、256G的内存,千兆光纤带宽,就算是10万个并发用户,那速度,也绝对是嗖嗖的。